👤

Sa se determine valorile lui x aparține lui R pentru care :
[tex]a) \sqrt{ {(1 - x)}^{2} } = x - 1[/tex]
[tex]b) \sqrt{ {(x - 3)}^{2} } = x - 3[/tex]
[tex]c) \sqrt{ {(2x - 3)}^{4} } = {(3 - 2x)}^{2} [/tex]
[tex]d) \sqrt[3]{ {(x - 1)}^{3} } = x - 1[/tex]
[tex]e) \sqrt[3]{ {(x - 3)}^{3} } = 2 - x[/tex]
[tex]f) \sqrt[3]{ {(2x - 1)}^{6} } = {(1 - 2x)}^{2} [/tex]


Răspuns :

Răspuns:

Explicație pas cu pas:

  • a)

|1-x|=x-1

|x-1|=x-1.....x-1>0....x>1

  • b) anal;og

|x-3|= x-3.....x>3

  • c) pozitive cel putin egale 0 ambele, x apartine R

  • d) radical impar   adevarat pe R

  • e) rezolvam ecuatia

x-3=2-x

2x=5....x=5/2

  • f)(2x-1)^2=(1-2x)^2  echivalent cu a^2= (-a)^2  x apartine R

[tex]\it a)\ \ \sqrt{(1-x)^2}=x-1\ \Leftrightarrow |1-x|=x-1 \Leftrightarrow |x-1|=x-1 \Leftrightarrow x-1 > 0 \Leftrightarrow x > 1\\ \\ b)\ \ \sqrt{(x-3)^2}=x-3\ \Leftrightarrow |x-3|=x-3 \Leftrightarrow x-3 > 0 \Leftrightarrow x > 3\\ \\ \\ c)\ \rule{0.2}{0.2}|_{ \sqrt{(2x-3)^4}=(3-2x)^2 \Leftrightarrow (2x-3)^2=(3-2x)^2 \Leftrightarrow (2x-3)^2=(2x-3)^2 \Leftrightarrow x\in\mathbb R[/tex]

[tex]\it d)\ \ \sqrt[3]{(x-1)^3}=x-1 \Leftrightarrow x-1=x-1 \Leftrightarrow x\in\ \mathbb R\\ \\ e)\ \ \sqrt[3]{(x-3)^3}=2-x \Leftrightarrow x-3=2-x \Leftrightarrow 2x=5 \Leftrightarrow x=2,5[/tex]