👤

Rezolvați problema de geometrie.​

Rezolvați Problema De Geometrie class=

Răspuns :

Salut!

Din păcate, nu îți pot face o figură, dar prin cuvinte pot să-ți explic problema.

a) M este mijlocul lui AB => AM=1/2 AB

∆ADB dreptunghic cu unghiul D=90° și DM este mediana triunghiului dreptunghic ADB=> DM =1/2 AB

N este mijlocul lui AC => AN=1/2 AC

∆ADC este dreptunghic cu unghiul D=90° și DN este mediana triunghiului dreptunghic ADC=> DN =1/2 AC

Cum AM=MD și AN=ND => AMDN este un romboid

Dacă AMDN este inscriptibil => unghiurile MAN și MDN sunt egale și suplementare => unghiul MAN este de 90° <=> unghiul BAC=90°

b) Fie O centrul cercului circumscris patrulaterului AMDN

Cum AMDN este patrulater inscriptibil, iar unghiul MAN=90° => O este mijlocul lui MN (deoarece MN este diametru), deci AO este mediana triunghiului MAN(1)

Fie O' centrul cercului circumscris ∆ABC

Și acesta este mijlocul lui BC, deoarece unghiul BAC=90°, deci AO' este mediană în ∆ABC(2)

Deoarece MN este linie mijlocie ∆ABC =>MN||BC(3)

Din (1), (2) și (3) =>, comform unei teoreme al medianei că punctele A, O, O' sunt coliniare

Uite cum este această teoremă a medianei: Fie ABC un triunghi oarecare, AD este mediană în ABC, și AO mediana AMN, unde MN este paralelă cu BC => punctele A, O și D sunt coliniare

Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile oferite v-au fost de ajutor. Nu ezitați să ne contactați pentru orice întrebare sau dacă aveți nevoie de asistență suplimentară. Vă așteptăm cu drag data viitoare și nu uitați să ne adăugați la favorite!


ID Learners: Alte intrebari