👤

, 5) Determinati nr. x, y si z ,stiind ca sunt direct proportionalea 5, 7, respectiv 12 , iar 2x+y-z=60​

Răspuns :

Răspuns:

×=60 ; y=84 ; z=144

Explicație pas cu pas:

x,y,z dp 5,7,12 => ×/5=y/7=z/12=k

=> x=5k ; y=7k ; z=12k

2x+y-z=60 <=> 2×5k+7k-12k=60

10k+7k-12k=60

5k=60

k=60÷5= 12

x=5k=5×12=60

y=7k=7×12=84

z=12k=12×12=144

verificam 2×60+84-144=120+84-144=204-144=60

{ x, y, z } d.p. { 5, 7, 12 } [tex] \Longrightarrow \dfrac{x}{5}= \dfrac{y}{7} = \dfrac{z}{12} = k [/tex], unde k = coeficient de proporționalitate

Și avem : x = 5k, y = 7k, z = 12k

2x + y - z = 60

Înlocuim

2 ⋅ 5k + 7k - 12k = 60

10k + 7k - 12k = 60

[tex] 5k = 60 \: \Big|_{:5} \Longrightarrow k = 12 [/tex]

Numerele sunt :

x = 5 ⋅ 12 = 60

y = 7 ⋅ 12 = 84

z = 12 ⋅ 12 = 144