2. Se consideră expresia E(x)= şi x = -1. (2p) a) Arată că 1 x+3 (x+1)(x+2) x+2) 5(x+1) 1 + (x+1)(x+2) x+2 1 x+1 9 + " unde x este număr real, x-3, x-2 pentru orice număr real x, x-2 şi x-1.

Răspuns:
Explicație pas cu pas:
E(x) = [1/(x+1)(x+2) + 1/(x+2)] : [(x+3) / 5(x+1)]
---------------------
x+1 ≠ 0 => x ≠ -1
x+2 ≠ 0 => x ≠ -2
x+3 ≠ 0 => x ≠ -3
--------------------------
1/(x+1)(x+2) + 1/(x+2) = 1/(x+1)(x+2) + (x+1)/(x+1)(x+2) =
= (1+x+1)/(x+1)(x+2) = (x+2)/(x+1)(x+2) = 1/(x+1) ; ∀ x ∈ R-{-2 ; -1}
-------------------------
E(x) = 1/(x+1) ·5(x+1)/(x+3) = 5/(x+3) ;
E(x) = 5/(x+3) ; ∀ x ∈ R-{-3 ; -2 ; -1}