👤

A Yunior ATICĂ XIV.4.66 La un magazin de jucării s-au adus cinci cutii cu câte două şi cu câte patru pina ecare pinata conține câte trei surprize, în total 42 de surprize. Câte cutii conțin două pinata?​

Răspuns :

Răspuns:

Pentru a rezolva această problemă, putem folosi algebra. Notăm cu \( x \) numărul de cutii care conțin câte două pinata și cu \( y \) numărul de cutii care conțin câte patru pinata.

Avem următoarele informații:

1. \( x + y = 5 \) (deoarece sunt în total 5 cutii).

2. Fiecare pinata conține câte trei surprize, iar în total sunt 42 de surprize, deci avem \( 3(2x) + 3(4y) = 42 \) sau \( 6x + 12y = 42 \).

Putem folosi acum sistemul de ecuații pentru a găsi valorile lui \( x \) și \( y \).

Să rezolvăm mai întâi prima ecuație pentru a exprima \( x \) în funcție de \( y \):

\[ x = 5 - y \]

Înlocuim \( x \) în a doua ecuație:

\[ 6(5 - y) + 12y = 42 \]

\[ 30 - 6y + 12y = 42 \]

\[ 30 + 6y = 42 \]

\[ 6y = 12 \]

\[ y = 2 \]

Acum, folosim această valoare pentru a găsi \( x \):

\[ x = 5 - 2 \]

\[ x = 3 \]

Sper că te-am ajutat!