👤

(2p) 3. Se consideră funcția f: RR, f(x) = 2x-1. Determină distanţa de la punctul M (-
[tex] - \frac{3}{2} [/tex]
,0) la graficul funcției f.​


2p 3 Se Consideră Funcția F RR Fx 2x1 Determină Distanţa De La Punctul M Tex Frac32 Tex0 La Graficul Funcției F class=

Răspuns :

Răspuns:

[tex]\boldsymbol{ \red{ d(M, G_f) = \dfrac{4\sqrt{5}}{5} }}[/tex]

Explicație pas cu pas:

y = 2x - 1 ⇒ 2x - y - 1 = 0

Coeficienții ecuației atașate funcției f sunt:

a = 2, b = -1, c = -1

[tex]d(M, G_f) = \dfrac{\big|a \cdot x_{M} + b \cdot y_{M} + c\big|}{\sqrt{a^{2} + b^{2} }} = \\[/tex]

[tex]= \dfrac{\bigg|2 \cdot \bigg(-\dfrac{3}{2} \bigg) + (-1) \cdot 0 + (-1)\bigg|}{\sqrt{2^{2} + (-1)^{2} }} = \dfrac{\big| - 3 + 0 - 1\big|}{\sqrt{4 + 1}} \\[/tex]

[tex]= \dfrac{\big| - 4\big|}{\sqrt{5}} = \dfrac{4}{\sqrt{5}} = \dfrac{4\sqrt{5}}{5}[/tex]