👤

Pe multimea numerelor reale se defineste legea de compozitie x*y=xy-x-y+2.
Calculati (x-1)(y-1), stiind ca x,y apartin lui R*, x diferit de y si x*(1/y)=(1/x)*y.


Răspuns :

Răspuns:

(x-1)(y-1) = 0

Explicație pas cu pas:

x o y = xy-x-y+2

x o (1/y) = x/y - x - 1/y + 2 = (x-1)/y -(x-2)

(1/x) o y = y/x -1/x -y+2 = (y-1)/x -(y-2)  =>

(x-1)/y -(x-2) = (y-1)/x -(y-2) =>

(x-1)/y - (y-1)/x = x-2-y+2 = x-y =>

x(x-1) - y(y-1) = xy(x-y) =>

x²-x-y²+y =  xy(x-y) <=>

(x-y)(x+y)-(x-y) =  xy(x-y) <=>

(x-y)(x+y-1) =  xy(x-y)  I:(x-y) =>

x+y-1 = xy =>

x-xy+y-1 = 0 =>

x-xy+y = 1

----------

(x-1)(y-1) = xy-x-y+1 = (-1)(x-xy+y-1) = (-1)(1-1) = (-1)·0 = 0

=> (x-1)(y-1) = 0

[tex]\it x*\dfrac{1}{y}=\dfrac{1}{x}*y \Rightarrow \dfrac{x}{y}-x-\dfrac{1}{y}+2=\dfrac{y}{x}-\dfrac{1}{x}-y+2 \Rightarrow\\ \\ \\ \Rightarrow\dfrac{^{x)}x}{\ y}-\dfrac{^{y)}y}{\ x}=\dfrac{^{x)}1}{\ y}-\dfrac{^{y)}1}{\ x}+(x-y) \Rightarrow \dfrac{(x-y)(x+y)}{xy}=\dfrac{x-y}{xy}+(x-y)\bigg|_{:(x-y)}\Rightarrow\\ \\ \\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{1}{xy}+1\bigg|_{\cdot xy} \Rightarrow x+y=1+xy \Rightarrow 0=xy-x-y+1 \Rightarrow[/tex]

[tex]\it \Rightarrow xy-y-(x-1)=0 \Rightarrow y(x-1)-(x-1)=0 \Rightarrow (x-1)(y-1)=0[/tex]