67=ab•x +r; r<ab
139=ab•y+r
187=ab•z+r
139=ab•y+r
67=ab•x +r; (-)
139-67=ab(y-x)
ab(y-x)=72 = > ab∈ {12; 18; 24; 36; 72} si y≥2
187=ab•z+r
139=ab•y+r(-)
187-139=ab(z-y)
ab(z-y)=48 ; z≥3; y≥2
ab∈ {12; 24; 48}
ab ∈ {12; 18; 24; 36; 72} ∩ {12; 24; 48}
ab∈{12; 24}
Pentru ab= 12 => r=7 ; 7<12
Pentru ab=24 => r=19; 19<24