Răspuns :
a) CD = AB = 3cm, AD = BC = 4cm
Cu teorema lui Pitagora în triunghiul DAC, dreptunghic în D, se obține
AC = 5cm.
Cu teorema lui Pitagora în triunghiul C'CA, dreptunghic în C, se obține
C'C = 12cm. A'A = C'C = 12cm
b)
[tex]\it \mathcal{A}_t=2(ab+bc+ca),\ \ a=3,\ b=4,\ c=12\\ \\ \mathcal{A}_t=2(3\cdot4+4\cdot12+12\cdot3)=2(12+48+36)=2\cdot96=192\ cm^2[/tex]
c) Fie M, mijlocul diagonalei C'A. În triunghiul C'CA segmentul MO este linie mijlocie, deci MO = C'C/2=12/2 = 6cm.
Distanța de la O la AC' este egală cu lungimea înălțimii corespunzătoare ipotenuzei în triunghiul OAM, dreptunghic în O.
AM = 13/2=6,5cm, OA = 5/2=2,5cm
[tex]\it d(O,\ AC') =\dfrac{OM\cdot OA}{AM}= \dfrac{^{10)}6\cdot2,5}{6,5}=\dfrac{6\cdot25^{(5}}{65}=\dfrac{6\cdot5}{13}=\dfrac{30}{13}\approx2,3\ cm[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile oferite v-au fost de ajutor. Nu ezitați să ne contactați pentru orice întrebare sau dacă aveți nevoie de asistență suplimentară. Vă așteptăm cu drag data viitoare și nu uitați să ne adăugați la favorite!