👤

Simplificați polinomul​

Simplificați Polinomul class=

Răspuns :

[tex] \frac{ {x}^{4} + {2x}^{2} - 3 }{ {x}^{3} - {2x}^{2} - x + 2 } = \frac{ { {(x}^{2}) }^{2} + 2x - 3 }{ {x}^{2}( \frac{ {x}^{3} }{ {x}^{2} } - \frac{ {2x}^{2} }{ {x}^{2} }) + ( - x + 2) } = \frac{ {x}^{4} - {x}^{2} + {3x}^{2} - 3 }{ {x}^{2}( {x}^{3 - 2} - 2) + ( - x + 2) } = \frac{ {x}^{2}( \frac{ {x}^{4} }{ {x}^{2} } - \frac{ {x}^{2} }{ {x}^{2} }) + 3( \frac{ {3x}^{2} }{3} - \frac{3}{3}) }{ {x}^{2}(x - 2) + ( - x + 2) } = \frac{ {x}^{2}( {x}^{4 - 2} - 1) + 3( {x}^{2} - 1) }{(x - 2)( \frac{ {x}^{2}(x - 2) }{x - 2} + \frac{ - x + 2}{x - 2}) } = \frac{ {x}^{2}( {x}^{2} - 1) + 3( {x}^{2} - 1) }{(x - 2)( {x}^{2} - 1) } = \frac{( {x}^{2} - 1)( \frac{ {x}^{2}( {x}^{2} - 1) }{ {x}^{2} - 1 } + \frac{3( {x}^{2} - 1) }{ {x}^{2} - 1 }) }{(x - 2)( {x}^{2} - 1) } = \frac{ {(x}^{2} - 1)( {x}^{2} + 3) }{(x - 2)( {x}^{2} - 1) } = \frac{ {x}^{2} + 3 }{x - 2} [/tex]

[tex]\it \dfrac{X^4+2X^2-3}{X^3-2X^2-X+2}=\dfrac{X^4+3X^2-X^2-3}{X^2(X-2)-(X-2)}= \dfrac{X^2(X^2+3)-(X^2+3)}{(X-2)(X^2-1)}=\\ \\ \\ =\dfrac{(X^2+3)(X^2-1)}{(X-2)(X^2-1)}=\dfrac{X^2+3}{X-1}[/tex]