👤

Ex 2 :
b) 2a-2b+2c=
c) 2xy+2ab-2=
d) 2a+4=
e) 4x+10y-14z=
Ex 3 :
a) 3x+4xy=
b) ax-bx+xz=
Ex 4 :
a) 3(x+1) +a(x+1) =
b) -4a(x+1) +2b(x+1) =


Răspuns :

Răspuns:

a). = 2(a-b+c)

b).= 2(xy+ab-1)

c). = 2(a+2)

d) = 2(2x+5y-7z)

3). a).  = x (3+4y)

b). = x(a-b+z)

4). a) =3x+3+ax+a

b). = -4ax-4a+2bx+2b

Explicație pas cu pas:

[tex]2) \\ \\ a)2a - 2b + 2c = 2( \frac{2a}{2} + \frac{ - 2b}{2} + \frac{2c}{2}) = 2(a - b + c) [/tex]

[tex]b)2xy + 2ab - 2 = 2( \frac{2xy}{2} + \frac{2ab}{2} - \frac{2}{2}) = 2(xy + ab - 1) [/tex]

[tex]c)2a + 4 = 2( \frac{2a}{2} + \frac{4}{2}) = 2(a + 2) [/tex]

[tex]d)4x + 10y - 14z = 2( \frac{4x}{2} + \frac{10y}{2} + \frac{ - 14z}{2}) = 2(2x + 5y - 7z) [/tex]

[tex]3) \\ \\ a)3x + 4xy = x( \frac{3x}{x} + \frac{4xy}{x}) = x(3 + 4y)[/tex]

[tex]b)ax - bx + xz = x( \frac{ax}{x} + \frac{ - bx}{x} + \frac{xz}{x}) = x(a - b + z) [/tex]

[tex]4) \\ \\ a)3(x + 1) + a(x + 1) = 3x + 3 + a(x + 1) = 3x + 3 + ax + a = 3(x + 1) + a(x + 1) = (x + 1)(3 + a)[/tex]

[tex]b) - 4a(x + 1) + 2b(x + 1) = 2(x + 1)( \frac{4a(x + 1)}{2(x + 1)} + \frac{ - 2b(x + 1)}{2(x + 1)}) = - 2(x + 1)(2a - b) [/tex]