👤

Pe baza problemei puzzle-ului 8, construiți o reprezentare model a problemei puzzle-ului 15 și creați două funcții euristice pentru a rezolva problema prin aplicarea strategiei de căutare A*.


Să se rezolve in Python.


Răspuns :

Răspuns:

from search import *

class NPuzzle(Problem):

def __init__(self, initial, goal, n):

""" Define goal state and initialize a problem """

self.goal = goal

self.n = n

Problem.__init__(self, initial, goal)

def find_blank_square(self, state):

"""Return the index of the blank square in a given state"""

return state.index(0)

def actions(self, state):

""" Return the actions that can be executed in the given state.

The result would be a list, since there are only four possible actions

in any given state of the environment """

possible_actions = ['UP', 'DOWN', 'LEFT', 'RIGHT']

index_blank_square = self.find_blank_square(state)

nr = int(math.sqrt(self.n + 1))

if index_blank_square % nr == 0:

possible_actions.remove('LEFT')

if index_blank_square < nr:

possible_actions.remove('UP')

if index_blank_square % nr == nr - 1:

possible_actions.remove('RIGHT')

if index_blank_square > self.n - nr:

possible_actions.remove('DOWN')

return possible_actions

def result(self, state, action):

""" Given state and action, return a new state that is the result of the action.

Action is assumed to be a valid action in the state """

# blank is the index of the blank square

blank = self.find_blank_square(state)

new_state = list(state)

nr = int(math.sqrt(self.n + 1))

delta = {'UP':-nr, 'DOWN':nr, 'LEFT':-1, 'RIGHT':1}

neighbor = blank + delta[action]

new_state[blank], new_state[neighbor] = new_state[neighbor], new_state[blank]

return tuple(new_state)

def goal_test(self, state):

""" Given a state, return True if state is a goal state or False, otherwise """

return state == self.goal

def check_solvability(self, state):

inversion = 0

for i in range(len(state)):

for j in range(i, len(state)):

if state[i] > state[j] != 0:

inversion += 1

return inversion % 2 == 0

def h(self, node):

""" Return the heuristic value for a given state. Default heuristic function used is

h(n) = number of misplaced tiles """

return sum(s != g for (s, g) in zip(node.state, self.goal))

................

from problem import NPuzzle

from math import *

class NPuzzleMiss(NPuzzle):

def h(self, node):

""" Return the heuristic value for a given state. Default heuristic function used is

h(n) = number of misplaced tiles """

return sum(s != g for (s, g) in zip(node.state, self.goal))

class NPuzzleMht(NPuzzle):

def h(self, node):

""" implement Manhattan distance. Hint! Look at

Missplaced Tiles heuristic function above """

return sum(abs(e - s) for (s, e) in zip(node.state, self.goal))

class NPuzzleEuc(NPuzzle):

""" implement Euclidean distance. """

def h(self, node):

return sqrt(sum(pow((x - s), 2) for (s, x) in zip(node.state, self.goal)))

class NPuzzleRC(NPuzzle):

def h(self, node):

size = ceil(sqrt(len(self.goal)))

sr = sc = 0

for i in range(0, size):

sr = sr + sum(s != g for (s, g) in zip(node.state[i * size:(i + 1) * size], self.goal[i * size:(i + 1) * size]))

for i in range(0, size):

sc = sc + sum(s != g for (s, g) in zip(node.state[i:len(node.state):size], self.goal[i:len(self.goal):size]))

return sr + sc