Răspuns :
[tex]x(t) = 3^t + \frac{1}{4}\\ x - \frac{1}{4} = 3^t\\ \ln{(x - \frac{1}{4})} = \ln{3^t}\\\ln{(x-\frac{1}{4})} = t\ln{3}\Rightarrow t = \frac{\ln{ (x-\frac{1}{4} )}}{\ln{3}}\iff \boxed{t = log_3 (x - \frac{1}{4})}[/tex]
[tex]y(t) = 4^t - 1\\y+1 = 4^t\\\ln{(y+1)} = \ln{4^t}\\\ln{(y+1)} = t\ln{4}\Rightarrow t = \frac{\ln{(y+1)}}{\ln{4}}\iff \boxed{t = log_4 (y+1)}[/tex]
[tex] t = t \iff log_3(x-\frac{1}{4}) = log_4(y+1)\Big | \div log_4(3)\\\frac{log_3(x-\frac{1}{4})}{log_4(3)} = log_3 (y + 1)\\\frac{1}{log_4(3)}\cdot log_3(x-\frac{1}{4}) = log_3 (y+1)\\log_3\Big((x-\frac{1}{4})^{\frac{1}{log_4(3)}}\Big) = log_3(y+1)\Rightarrow y+1 = (x-\frac{1}{4})^{\frac{1}{log_4(3)}}\iff \boxed{y = \sqrt[log_4(3)]{x-\frac{1}{4}}-1}[/tex]
Viteza:
[tex]v = \sqrt{v_x^2 + v_y^2}\\\textrm{Viteza pe x este derivata functiei x(t), si viteza pe y este derivata functiei y(t).}\\v_x = \frac{dx}{dt}(t) = [3^t + \frac{1}{4}]' = [3^t]' + [\frac{1}{4}]' = 3^t\ln{3} + 0 = 3^t\ln{3}\\v_y = \frac{dy}{dt}(t) = [4^t-1]' = [4^t]' - [1]' = 4^t\ln{4} - 0 = 4^t\ln{4}[/tex]
[tex]v = \sqrt{(3^t\ln{3})^2 + (4^t\ln{4})^2} = \sqrt{3^{2t}(\ln{3})^2 + 4^{2t}(\ln{4})^2}\\\ln{3} = \frac{log_3(3)}{log_3 (e)}= \frac{1}{log_3 (e)}\\\ln{4} = \frac{log_3(4)}{log_3 (e)} \\\\v = \sqrt{3^{2t} \cdot (\frac{1}{log_3 (e)})^2 + 4^2t(\frac{log_3(4)}{log_3(e)})^2} = \sqrt{\frac{1}{(log_3(e))^2} (3^{2t} + 4^{2t}\cdot (log_3(4))^2)} = \frac{\sqrt{3^{2t} + 4^{2t}\cdot (log_3(4))^2}}{log_3(e)} = \frac{\sqrt{9^t + 16^t\cdot (log_3(4))^2}}{log_3(e)}[/tex]
Acceleratia:
[tex]a = \frac{dv}{dt} (t) = [\frac{\sqrt{9^t + 16^t\cdot (log_3(4))^2}}{log_3(e)}]' = \frac{1}{log_3(e)}[\sqrt{9^t + 16^t\cdot(log_3(4))^2}]' = \frac{1}{log_3(e)}\cdot \frac{1}{2}\cdot (9^t + 16^t\cdot (log_3(4))^2) \cdot [9^t + 16^t(log_3(4))^2]' = \frac{1}{log_3(e)}\cdot \frac{1}{2}\cdot (9^t + 16^t\cdot (log_3(4))^2) \cdot (9^t\ln{9} + 16^t\ln{16}\cdot(log_3(4))^2) = \frac{1}{log_3(e)}\cdot \frac{1}{2}\cdot (9^t + 16^t\cdot (log_3(4))^2) \cdot (9^t\ln{3}\cdot 2 + 16^t\ln{4}\cdot 2\cdot(log_3(4))^2) = \frac{1}{log_3(e)}\cdot \frac{1}{2}\cdot (9^t + 16^t\cdot (log_3(4))^2) \cdot 2(9^t\ln{3} + 16^t\ln{4}\cdot(log_3(4))^2) = \frac{1}{log_3(e)}\cdot (9^t + 16^t\cdot (log_3(4))^2) \cdot (9^t\ln{3} + 16^t\ln{4}\cdot(log_3(4))^2) = \frac{1}{log_3(e)}({(9^t)}^2\ln{3} + (9\cdot 16)^t\ln{4}\cdot (log_3(4))^2 + (9\cdot 16)^t\ln{3}\cdot (log_3(4))^2 + {(16^t)}^2\ln{4}\cdot (log_3(4))^4)= \frac{1}{log_3(e)}(9^{2t}\ln{3} + (9\cdot 16)^t \cdot (log_3(4))^2 \cdot (\ln{4} + \ln{3}) + 16^{2t}\ln{4}\cdot (log_3(4))^4) = \frac{1}{log_3(e)}(81^t\frac{1}{log_3 (e)} + 144^t(log_3(4))^2\cdot (\frac{log_3(4) + 1}{log_3(e)}) + 256^t\frac{(log_3(4))^5}{log_3(e)}) = \frac{1}{(log_3(e))^2}(81^t + 144^t(log_3(4))^2\cdot (log_3(4) + 1) + 256^t( log_3(4) )^5)[/tex]
Daca inlocuim logaritmii cu valorile lor, obtinem:
[tex]v = \frac{\sqrt{9^t + 16^t\cdot (log_3(4))^2}}{log_3(e)} = \frac{\sqrt{9^t + 16^t\cdot 1.59228941577}}{0.91023922662} = 1.09861228867\sqrt{9^t + 16^t\cdot 1.59228941577} = \sqrt{ 1.20694896081\cdot 9^t + 16^t \cdot 1.92181205568}[/tex]
[tex]a = \frac{1}{(log_3(e))^2}(81^t + 144^t(log_3(4))^2\cdot (log_3(4) + 1) + 256^t( log_3(4) )^5) = 1.20694896081\cdot (81^t + 144^t \cdot 1.59228941577 \cdot 2.26185950714 + 256^t \cdot 3.19930040289) = 1.20694896081\cdot 81^t + 1.20694896081\cdot 144^t \cdot 3.60153495318 + 1.20694896081 \cdot 256^t\cdot 3.19930040289 = 1.20694896081\cdot 81^t +4.34686886906 \cdot 144^t + 3.86139229659\cdot 256^t[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Fizică. Sperăm că informațiile oferite v-au fost de ajutor. Nu ezitați să ne contactați pentru orice întrebare sau dacă aveți nevoie de asistență suplimentară. Vă așteptăm cu drag data viitoare și nu uitați să ne adăugați la favorite!