Răspuns :
Răspuns:
Explicație pas cu pas:
Toate ecuatiile sunt ecuatii de gradul 2
ax^2 + bx + c = 0
Δ = b^2 - 4a*c
x1 = (-b + √Δ)/2a
x2 = (-b - √Δ)/2
_____________
4a)
x^2 - 7x + 6 = 0
Δ = 49 - 24 = 25
x1 = (7 + 5)/2 = 6
x2 = (7 - 5)/2 = 1
________________
5a)
x^2 - 5x + 6 = 0
Δ = 25 - 24 = 1
x1 = (5 + 1)/2 = 3
x2 = (5 - 1)/2 = 2
_________________
6a)
2x^2 + x - 3 = 0
Δ = 1 + 24 = 25
x1 = (-1 + 5)/4 = 1
x2 = (-1 - 5)/4 = -6/4 = -3/2
____________________
Spor la treaba!
Răspuns:
4)
a)x²-7x+6=0
x²-x-6x+6=0
x(x-1)-6(x-1)=0
(x-1)(x-6)=0
x-1=0
x-1+1=0+1
x=0+1
x=1
x-6=0
x-6+6=0+6
x=0+6
x=6
S={1,6}
b)x²+2x-8=0
x²+4x-2x-8=0
x(x+4)-2(x+4)=0
(x+4)(x-2)=0
x+4=0
x+4-4=0-4
x=0-4
x=-4
x-2=0
x-2+2=0+2
x=0+2
x=2
S={-4,2}
c)x²+5x-14=0
x²+7x-2x-14=0
x(x+7)-2(x+7)=0
(x+7)(x-2)=0
x+7=0
x+7-7=0-7
x=0-7
x=-7
x-2=0
x-2+2=0+2
x=0+2
x=2
S={-7,2}
d)x²-8x-20=0
x²+2x-10x-20=0
x(x+2)-10(x+2)=0
(x+2)(x-10)=0
x+2=0
x+2-2=0-2
x=0-2
x=-2
x-10=0
x-10+10=0+10
x=0+10
x=10
S={-2,10}
e)x²+4x-12=0
x²+6x-2x-12=0
x(x+6)-2(x+6)=0
(x+6)(x-2)=0
x+6=0
x+6-6=0-6
x=0-6
x=-6
x-2=0
x-2+2=0+2
x=0+2
x=2
S={-6,2}
f)x²-7x-30=0
x²+3x-10x-30=0
x(x+3)-10(x+3)=0
(x+3)(x-10)=0
x+3=0
x+3-3=0-3
x=0-3
x=-3
x-10=0
x-10+10=0+10
x=0+10
x=10
S={-3,10}
g)x²-9x+14=0
x²-2x-7x+14=0
x(x-2)-7(x-2)=0
(x-2)(x-7)=0
x-2=0
x-2+2=0+2
x=0+2
x=2
x-7=0
x-7+7=0+7
x=0+7
x=7
S={2,7}
h)x²-10x+16=0
x²-2x-8x+16=0
x(x-2)-8(x-2)=0
(x-2)(x-8)=0
x-2=0
x-2+2=0+2
x=0+2
x=2
x-8=0
x-8+8=0+8
x=0+8
x=8
S={2,8}
i)x²+7x+10=0
x²+5x+2x+10=0
x(x+5)+2(x+5)=0
(x+5)(x+2)=0
x+5=0
x+5-5=0-5
x=0-5
x=-5
x+2=0
x+2-2=0-2
x=0-2
x=-2
S={-5,-2}
5)
a)x²-5x+6=0
x²-2x-3x+6=0
x(x-2)-3(x-2)=0
(x-2)(x-3)=0
x-2=0
x-2+2=0+2
x=0+2
x=2
x-3=0
x-3+3=0+3
x=0+3
x=3
S={2,3}
b)x²+x-6=0
x²+3x-2x-6=0
x(x+3)-2(x+3)=0
(x+3)(x-2)=0
x+3=0
x+3-3=0-3
x=0-3
x=-3
x-2=0
x-2+2=0+2
x=0+2
x=2
S={-3,2}
c)x²-7x+12=0
x²-3x-4x+12=0
x(x-3)-4(x-3)=0
(x-3)(x-4)=0
x-3=0
x-3+3=0+3
x=0+3
x=3
x-4=0
x-4+4=0+4
x=0+4
x=4
S={3,4}
d)x²+x-12=0
x²+4x-3x-12=0
x(x+4)-3(x+4)=0
(x+4)(x-3)=0
x+4=0
x+4-4=0-4
x=0-4
x=-4
x-3=0
x-3+3=0+3
x=0+3
x=3
S={-4,3}
e)x²-6x+8=0
x²-2x-4x+8=0
x(x-2)-4(x-2)=0
(x-2)(x-4)=0
x-2=0
x-2+2=0+2
x=0+2
x=2
x-4=0
x-4+4=0+4
x=0+4
x=4
S={2,4}
f)x²+3x-10=0
x²+5x-2x-10=0
x(x+5)-2(x+5)=0
(x+5)(x-2)=0
x+5=0
x+5-5=0-5
x=0-5
x=-5
x-2=0
x-2+2=0+2
x=0+2
x=2
S={-5,2}
g)x²-8x+15=0
x²-3x-5x+15=0
x(x-3)-5(x-3)=0
(x-3)(x-5)=0
x-3=0
x-3+3=0+3
x=0+3
x=3
x-5=0
x-5+5=0+5
x=0+5
x=5
S={3,5}
h)x²+2x-24=0
x²+6x-4x-24=0
x(x+6)-4(x+6)=0
(x+6)(x-4)=0
x+6=0
x+6-6=0-6
x=0-6
x=-6
x-4=0
x-4+4=0+4
x=0+4
x=4
S={-6,4}
i)x²-4x-21=0
x²+3x-7x-21=0
x(x+3)-7(x+3)=0
(x+3)(x-7)=0
x+3=0
x+3-3=0-3
x=0-3
x=-3
x-7=0
x-7+7=0+7
x=0+7
x=7
S={-3,7}
6)
a)2x²+x-3=0
2x²+3x-2x-3=0
x(2x+3)-(2x+3)=0
(2x+3)(x-1)=0
2x+3=0
2x+3-3=0-3
2x=0-3
2x=-3
2x:2=-3:2
x=-3:2
[tex]x = - \frac{3}{2} [/tex]
x-1=0
x-1+1=0+1
x=0+1
x=1
S={[tex] - \frac{3}{2} [/tex],1}
b)2x²-x-15=0
2x²+5x-6x-15=0
x(2x+5)-3(2x+5)=0
(2x+5)(x-3)=0
2x+5=0
2x+5-5=0-5
2x=0-5
2x=-5
2x:2=-5:2
x=-5:2
[tex]x = - \frac{5}{2} [/tex]
x-3=0
x-3+3=0+3
x=0+3
x=3
S={[tex] - \frac{5}{2}[/tex],3}
c)3x²-5x+2=0
3x²-2x-3x+2=0
x(3x-2)-(3x-2)=0
(3x-2)(x-1)=0
3x-2=0
3x-2+2=0+2
3x=0+2
3x=2
3x:3=2:3
x=2:3
[tex]x = \frac{2}{3} [/tex]
x-1=0
x-1+1=0+1
x=0+1
x=1
S={[tex] \frac{2}{3} [/tex],1}
d)2x²-5x+2=0
2x²-x-4x+2=0
x(2x-1)-2(2x-1)=0
(2x-1)(x-2)=0
2x-1=0
2x-1+1=0+1
2x=0+1
2x=1
2x:2=1:2
x=1:2
[tex]x = \frac{1}{2} [/tex]
x-2=0
x-2+2=0+2
x=0+2
x=2
S={[tex] \frac{1}{2} [/tex],2}
e)2x²+3x+1=0
2x²+2x+x+1=0
2x(x+1)+x+1=0
(x+1)(2x+1)=0
x+1=0
x+1-1=0-1
x=0-1
x=-1
2x+1=0
2x+1-1=0-1
2x=0-1
2x=-1
2x:2=-1:2
x=-1:2
[tex]x = - \frac{1}{2} [/tex]
S={-1,[tex] - \frac{1}{2} [/tex]}
f)2x²-x-3=0
2x²+2x-3x-3=0
2x(x+1)-3(x+1)=0
(x+1)(2x-3)=0
x+1=0
x+1-1=0-1
x=0-1
x=-1
2x-3=0
2x-3+3=0+3
2x=0+3
2x=3
2x:2=3:2
x=3:2
[tex]x = \frac{3}{2} [/tex]
S={-1,[tex] \frac{3}{2} [/tex]}
g)3x²+x-2=0
3x²+3x-2x-2=0
3x(x+1)-2(x+1)=0
(x+1)(3x-2)=0
x+1=0
x+1-1=0-1
x=0-1
x=-1
3x-2=0
3x-2+2=0+2
3x=0+2
3x=2
3x:3=2:3
x=2:3
[tex]x = \frac{2}{3} [/tex]
S={-1,[tex] \frac{2}{3}[/tex]}
h)3x²+4x-7=0
3x²+7x-3x-7=0
x(3x+7)-(3x+7)=0
(3x+7)(x-1)=0
3x+7=0
3x+7-7=0-7
3x=0-7
3x=-7
3x:3=-7:3
x=-7:3
[tex]x = - \frac{7}{3} [/tex]
x-1=0
x-1+1=0+1
x=0+1
x=1
S={[tex] - \frac{7}{3} [/tex],1}
i)2x²+x-1=0
2x²+2x-x-1=0
2x(x+1)-(x+1)=0
(x+1)(2x-1)=0
x+1=0
x+1-1=0-1
x=0-1
x=-1
2x-1=0
2x-1+1=0+1
2x=0+1
2x=1
2x:2=1:2
x=1:2
[tex]x = \frac{1}{2} [/tex]
S={-1,[tex] \frac{1}{2} [/tex]}
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile oferite v-au fost de ajutor. Nu ezitați să ne contactați pentru orice întrebare sau dacă aveți nevoie de asistență suplimentară. Vă așteptăm cu drag data viitoare și nu uitați să ne adăugați la favorite!