[tex] {3}^{1 + 2 + 3 + ... + 2013} = \\ = {3}^{ \frac{2013(2013 + 1)}{2} } \\ = {3}^{ \frac{2013 \times 2014}{2} } \\ = {3}^{ 2013 \times 1007} \\ {3}^{3 \times 1007 \times 671} = {3}^{2013 \times 1007} \\ deci \: \: \frac{ {3}^{2013 \times 1007} }{ {3}^{2013 \times 1007} } = 1[/tex]
1+2+3+....+n=n(n+1)/2