Răspuns :
Răspuns:
Explicație pas cu pas:
Faptul ca aₙ ∈(0,1 ) se demonstreaza foarte simplu prin inductie , nu voi sta sa demonstrez asta( daca nu reusesti , poti sa imi scrii in comentarii) .
Pentru punctul b) putem folosi urmatorul trick:
[tex]\texttt{Relatia de recurenta e mai poate scrie : }\\a_n\cdot \sqrt{a_n}=a_n-a_{n+1}\\\texttt{Tinand cont de faptul ca }a_{n}\in (0,1) \texttt{ rezulta ca }\\a_n^2<a_n\sqrt{a_n} =a_n-a_{n+1}\\\texttt{Prin urmare:}\\b_n=a_1^2+a_2^2+a_3^2+\ldots+a_n^2<a_1-a_2+a_2-a_3+\ldots+a_n-a_{n+1} =\\ =a_1-a_{n+1} < a_1 ,~ Q.E.D.[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile oferite v-au fost de ajutor. Nu ezitați să ne contactați pentru orice întrebare sau dacă aveți nevoie de asistență suplimentară. Vă așteptăm cu drag data viitoare și nu uitați să ne adăugați la favorite!