[tex]\it \dfrac{a}{b} =\dfrac{1}{b}+1 \Rightarrow \dfrac{a}{b}-\dfrac{1}{b} =1 \Rightarrow \dfrac{a-1}{b} =1 \Rightarrow a-1=b \Rightarrow a = b+1\ \ \ \ (1)\\ \\ \\ a,\ b\in\mathbb{N} \ \ \ \ \ (2)\\ \\ \\ (1),\ (2)\Rightarrow a > b,\ a,\ b = consecutive[/tex]