Răspuns:
Explicație pas cu pas:
[tex]a=\sqrt{12+6\sqrt{3} }-2\sqrt{(\sqrt{3}-2)^{2} } -3\sqrt{4-2\sqrt{3} } = \sqrt{( 3^{2} +2*3*\sqrt{3} +(\sqrt{3})^{2}) } -2*|\sqrt{3} - 2 | -3* \sqrt{(\sqrt{3})^{2}-2*1*\sqrt{3}+1^{2} } = | 3+\sqrt{3} | - 2 * | 2 - \sqrt{3} | - 3 * | \sqrt{3} - 1| = 3 + \sqrt{3} -2 *( 2 - \sqrt{3}) - 3 * ( \sqrt{3} - 1) = 3 + \sqrt{3} - 4 + 2\sqrt{3} -3 \sqrt{3} + 3 = 2~natural[/tex]