Explicație pas cu pas:
Aducem la acelasi numitor in paranteza si inversam ultima fractie a expresiei deoarcere transformam operatorul de impartire in operator de inmultire.
[tex]E(x) = \frac{(x+1)(x+3) - (2x^2+3x-3) +(2x-1)(x-3)}{(x+3)(x-3)} \frac{(x+3)^2}{2(x+3)(x-3)} = \frac{x^2+4x+3 - 2x^2-3x+3 + 2x^2-7x+3}{2(x-3)^2} = \frac{x^2-6x+9}{2(x-3)^2} = \frac{(x-3)^2}{2(x-3)^2} = \frac{1}{2}[/tex]