👤

x(1+1/2+1/3+......+1/2019)=2019-1/2-1/3-......-2018/2019

Răspuns :

Răspuns:

1

Explicație pas cu pas:

Totul sta in ultimul sir. Daca dam factor comun -(minus), ramane cu toate pozitive:

[tex]\frac{1}{2}+\frac{2}{3}+...+\frac{2018}{2019}=1-\frac{1}{2}+1-\frac{1}{3}+...+1-\frac{1}{2019}=2018-(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019})[/tex]

Daca nu intelegi ce s-a intamplat aici, explicatia e asa:

Sirul nostru e de forma [tex]\frac{n}{n+1}[/tex], care poate fi scris si ca [tex]1-\frac{1}{n}[/tex]. Daca amplifici ai sa vezi ca da acelasi lucru. Acum ne intoarcem la exercitiul complet.

[tex]x(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019})=2019-[2018-(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019})]\\x(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019})=2019-2018+(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019})\\x(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019})=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\\x=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}\\x=1[/tex]