👤

Calculați :
[tex]a) \: \sqrt{3} \times ( \sqrt{7} - \sqrt{5} + \sqrt{2} )[/tex]
[tex]b) \: - \sqrt{5} ( \sqrt{5} - 2 \sqrt{11} + 3)[/tex]


Răspuns :

[tex]a)\quad \sqrt{3}\cdot (\sqrt{7}-\sqrt{5}+\sqrt{2}) = \\ \\ = \sqrt{21}-\sqrt{15}+\sqrt{6} \\ \\\\b)\quad -\sqrt{5}\cdot (\sqrt{5}-2\sqrt{11}+3) = \\ \\ =-5 + 2\sqrt{55} -3\sqrt{5} \\ \\ =2\sqrt{55}-3\sqrt{5}-5[/tex]

a) [tex]\it \sqrt{3} \cdot (\sqrt{7} - \sqrt{5} + \sqrt{2}) = \sqrt{21} - \sqrt{15} + \sqrt{6}[/tex]

b) [tex]\it -\sqrt{5} (\sqrt{5} - 2\sqrt{11} + 3) = -\sqrt{25} + 2\sqrt{55} - 3\sqrt{5} = -5 + 2\sqrt{55} - 3\sqrt{5}[/tex]