Răspuns:
Explicație pas cu pas:
a= √(x+2)²+√(x-5)²=|x+2|+|x-5|
pt x=-2, a=0+|-7|=0+7=7∈N
ptx=5, a=|7|+0=7 ∈N
pt x∈(-2;5), x+2>0 si x-5<0
deci |x+2|=x+2
si
|x-5|= -(x-5) =-x+5
atunci a=x+2+(-x+5)=7∈N
exe 2
(x+2)/(x-1)∈N
(x-1+3)/(x-1)∈N
1+3/(x-1)∈N
dar 1∈N
deci 3/(x-1)∈N
x-1∈D3N={1;3}
x∈{2;4}=A
-2≤4x-6<10 |+6
4≤4x<16 |:4
1≤x<4⇔x∈[1;4) pt ca x∈R
B=[1;4)
{1;3}∩[1;4)={1;3} adica A∩B=A