[tex]\displaystyle\\\text{Daca pentru orice }( n\in \mathbb{N}^\ast)\text{ avem ca }\\\\~\left[x_n=\frac{n+1}{1}\cdot\frac{n+2}{3}\cdot\ldots\cdot\frac{n+n}{2n-1}=\prod_{k=1}^n\frac{n+k}{2k-1}\right]\\\\\\\text{atunci valoarea lui }~\Big(x_{2018}\Big)~\text{este:}\\\\\\a)~~\Big(\frac{2019+2019}{2\cdot2019-1} \Big)\\\\\\b)~~\Big(2019\Big)\\\\\\c)~~\Big(2^{2018}\Big)\\\\\\d)~~\Big(1\Big)[/tex]
Acesta este textul descifrat din enuntul problemei.
E scris intr-o alta versiune de LATEX.
Avea putine diferente pe care le-am adaptat.
Doar am decodificat problema, nu am rezolvat-o.
Acum ne putem gandi la rezolvare si eu si altii.