👤


2×(1+2+3+....2018)+2019


Răspuns :

Răspuns:

Explicație pas cu pas:

2 × ( 1 + 2 + 3 + ... + 2018 ) + 2019 =

= 2 × 2018 × ( 1 + 2018 ) : 2 + 2019 =

= 2018 × 2019 + 2019 =

= 2019 × ( 2018 + 1 ) =

= 2019 × 2019 =

= 2019² → patrat perfect

2×(1 + 2 + 3 + .. + 2018) + 2019 =

= 2×2018×2019 : 2 + 2019

= 2018×2019 + 2019

= 2019×(2018 + 1)

= 2019×2019

= 2019²

Obs. Am folosit formula lui Gauss pentru numere consecutive :

1 + 2 + .. + n = n(n + 1) / 2