Răspuns:
Explicație pas cu pas:
[tex]a=\frac{k}{2+\sqrt{2} }-4-2+4\sqrt{2}-3-2\sqrt{2}= \frac{k(2-\sqrt{2}) }{2^{2}-(\sqrt{2})^{2} }-9+2\sqrt{2}=\frac{2k-k*\sqrt{2} }{2}-9+2\sqrt{2} =k-\frac{k\sqrt{2} }{2}-9+2\sqrt{2}\\Pentru~k=4,~obtinem~a=4-2\sqrt{2}-9+2\sqrt{2}=-5~numar~intreg[/tex]