Răspuns :
Răspuns:
a
Explicație pas cu pas:
[tex]\sqrt{log_a(ax) + log_x(ax)} + \sqrt{log_a(\frac{x}{a}) + log_x(\frac{a}{x})} = 2\sqrt{a}\\\textrm{Aplicam } log_k(ab) = log_k(a) + log_k(b) \textrm{ si } log_k(a/b) = log_k (a) - log_k(b)\\\sqrt{log_a(a) + log_a(x) + log_x(a) + log_x(x)} + \sqrt{log_a(x) - log_a(a) + log_x(a) - log_x(x)} = 2\sqrt{a}[/tex]
[tex]\sqrt{1 + log_a(x) + log_x(a) + 1} + \sqrt{log_a(x) + log_x(a) - 1 - 1} = 2\sqrt{a}\\\\\sqrt{log_a(x) + log_x(a) + 2} + \sqrt{log_a(x) + log_x(a) - 2} = 2\sqrt{a}\\\\\textrm{Notam b = }log_a(x) + log_x(a)\\\\\sqrt{b+2} + \sqrt{b-2} = 2\sqrt{a}\\\\\sqrt{b+2}\sqrt{b-2} = \sqrt{(b+2)(b-2)} = \sqrt{b^2 - 4}\\\\\sqrt{b+2} + \sqrt{b-2} = 2\sqrt{a}\Bigg | \hat{}\,\, 2\\\\ b \cancel{+ 2} + b \cancel{- 2} + 2\sqrt{b^2 - 4} = 4a\\\\2b+2\sqrt{b^2 - 4} = 4a\Bigg | \div 2\\\\ b + \sqrt{b^2 - 4} = 2a\\\\ log_a(x) + log_x(a) + \sqrt{(log_a(x) + log_x(a))^2 - 4} = 2a\\\\ log_a(x) + log_x(a) + \sqrt{log_a^2(x) + log_x^2(a) + 2log_x(a)\cdot log_a(x) - 4} = 2a[/tex]
[tex]\textrm{Aplicam } a\cdot log_b(c) = log_b(c^a)\textrm{ astfel:}\\\\log_a(x)\cdot log_x(a) = log_x(a^{log_a(x)})\\\\\textrm{Acum, }a^{log_a(b)} = b\\\\ \implies log_x(a^{log_a(x)}) = log_x(x) = 1 = log_a(x) \cdot log_x(a)[/tex]
[tex]log_a(x) + log_x(a) + \sqrt{log_a^2(x) + log_x^2(a) + 2\cdot 1 - 4} = 2a\\\\log_a(x) + log_x(a) + \sqrt{log_a^2(x) + log_x^2(a) - 2} = 2a\\\\log_a(x) + log_x(a) + \sqrt{log_a^2(x) + log_x^2(a) - 2\cdot log_a(x)\cdot log_x(a)} = 2a\\\\log_a(x) + log_x(a) + \sqrt{(log_a(x) - log_x(a))^2} = 2a\\\\log_a(x) + log_x(a) + | log_a(x) - log_x(a) | = 2a\\\\\textrm{Daca } log_a(x) - log_x(a) \geq 0:\\\\2log_a(x) = 2a\\\\a = log_a(x)\\\\ log_a(a^a) = log_a(x)\Rightarrow x = a^a\\\\\textrm{Daca }log_a(x) - log_x(a) < 0: \\\\ 2log_x(a) = 2a\\\\ log_x(a) = a\\\\ log_x(a) = log_x(x^a)\\\\ a = x^a\Big | \hat{}\,\,\frac{1}{a}\\\\ x = a^\frac{1}{a}\\\\\implies \boxed{x = a^{a^{\pm 1}}}[/tex]
Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile oferite v-au fost de ajutor. Nu ezitați să ne contactați pentru orice întrebare sau dacă aveți nevoie de asistență suplimentară. Vă așteptăm cu drag data viitoare și nu uitați să ne adăugați la favorite!