f(x) = x²e⁻ˣ
f'(x) = 2xe⁻ˣ - x²e⁻ˣ
f'(0) = 0
f''(x) = 2e⁻ˣ - 2xe⁻ˣ - f'(x)
f''(0) = 2
f'''(x) = -2e⁻ˣ - 2e⁻ˣ + 2xe⁻ˣ - f''(x)
f'''(0) = -2-2+0-2 = -6
fⁱᵛ(x) = 2e⁻ˣ + 2e⁻ˣ + 2e⁻ˣ - 2xe⁻ˣ - f'''(x)
fⁱᵛ(0) = 2+2+2-0-(-6) = 12
fᵛ(x) = -2e⁻ˣ - 2e⁻ˣ - 2e⁻ˣ - 2e⁻ˣ + 2xe⁻ˣ - fⁱᵛ(x)
fᵛ(0) = -2-2-2-2-12 = -20
fᵛⁱ(x) = 2·4e⁻ˣ + 2e⁻ˣ - 2xe⁻ˣ - fᵛ(x)
fᵛⁱ(0) = 2·4·1 + 2·1 - 0 - (-20) = 8 + 2 + 20 = 30
⇒ n = VI ⇒ n = 6