👤

a∈R

[tex]2^{a-1}[/tex],[tex]2^{-a+2}+1[/tex], [tex]2^{a+1}+1[/tex] progresie aritmetica


Care-s valorile ptr a? ^^


Răspuns :

Răspuns:

[tex]2*(2^{-a+2}+1)=2^{a-1}+2^{a+1}+1,~2^{3-a}+1=\frac{2^{a}}{2}+2*2^{a},~\frac{8}{2^{a}}+1 = \frac{2^{a}}{2}+2*2^{a},~|*2*2^{a},~5*(2^{a})^{2}-2*2^{a}-16=0,~fie~2^{a}=t>0,~\\5t^{2}-2t-16=0,~delta=324,~\sqrt{324}=18,~t=2,~deci~2^{a}=2^{1},~deci~a=1.[/tex]

Explicație pas cu pas: