👤

f(x) = [tex]x^{2}[/tex]-2x totul supra [tex](x-1)^{2}[/tex]
Aflati derivata functiei


Răspuns :

[tex]f(x)=\frac{x^{2}-2x }{(x-1)^{2} } \\f'(x)=(\frac{x^{2}-2x }{(x-1)^{2} })'\\(\frac{u(x)}{v(x)}) '=\frac{(u(x))'*v(x)-(v(x))'*u(x)}{v(x)^2} \\f'(x)=(\frac{x^{2}-2x }{(x-1)^{2} })'=\frac{(x^2-2x)'(x-1)^2-[(x-1)^2]'(x^2-2x)}{(x-1)^4}=\frac{(2x-2)(x-1)^2-2(x-1)(x-1)'(x^2-2)}{(x-1)^4}=\frac{(x-1)^2(2x-2)-2(x-1)(x^2-2x)}{(x-1)^4} =\frac{2x-2}{(x-1)^2}-\frac{2(x^2-2x)}{(x-1)^3}=\frac{2}{(x-1)^3}\\\\f'(x)=\frac{2}{(x-1)^3}[/tex]

Răspuns:

[tex]f' = \frac{2}{(x-1)^3}[/tex]

Explicație pas cu pas:

[tex](\frac{f}{g})' = \frac{f'g - fg'}{g^2}\\f = \frac{x^2-2x}{(x-1)^2}\Rightarrow f' = \frac{(x-1)^2[x^2 - 2x]' - (x^2-2x)[(x-1)^2]'}{\Big((x-1)^2\Big)^2} = \frac{(x-1)^2\cdot(2x - 2) - (x^2-2x)\cdot 2(x-1)\cdot [x-1]'}{(x-1)^4} = \frac{(x-1)^2\cdot 2(x-1) - x(x-2)\cdot 2(x-1)\cdot 1}{(x-1)^4} = \frac{2(x-1)^3 - 2x(x-1)(x-2)}{(x-1)^4} = \frac{2(x-1)^2 - 2x(x-2)}{(x-1)^3} = \frac{2(x^2 - 2x + 1) - 2x^2 + 4x}{(x-1)^3} = \frac{2x^2 - 4x + 2 - 2x^2 + 4x}{(x-1)^3} = \frac{2}{(x-1)^3}[/tex]